Previous Next Facebook Instagram Twitter Pinterest Back to top

Smart*Light project

The aim of the Smart*Light research project is to develop a ‘tabletop synchrotron’, a compact and portable source of extremely high-intensity X-rays with adjustable wavelengths.

Cross-border research into highly innovative X-ray solutions

For this research, a consortium of twelve organisations in the Netherlands and Flanders has received a subsidy of 2.85 million euros from the European Regional Development Fund (Interreg Vlaanderen-Nederland). Smart*Light will eventually have applications in medical diagnostics, in research laboratories for the development of new materials and in museums for inspecting important artworks. 

X-ray technology

Screening patients for breast cancer, checking welding joints in pipelines and inspecting the chemical condition of artworks are usually conducted using the same ‘classical’ X-ray technology, developed in the nineteenth century. Because X-rays have a fairly low intensity and are not adjustable, it is only possible to record a single moment in time and in many cases the resulting information is insufficiently detailed. For advanced applications, such as the development of high-tech materials and new drugs,  ‘coherent’ high-intensity X-rays are indispensible. These high-intensity X-rays are currently produced in synchrotrons, large accelerators in which electrons move through a 1-km-long tube at almost the speed of light. These synchrotron rays allow changes in materials to be charted in great detail in time and space. However, the limited availability of high-energy synchrotron rays places great limitations on research. For many instances where an image is needed, travelling to a synchrotron (all of which are outside the Benelux area) is impossible.

Collision of laser and electrons

Smart*Light employs new accelerator technology that translates laser light into intense and coherent X-rays by forcing the laser light to collide – via ‘inverse Compton scattering’ – with a high-energy bundle of electrons. These rays enable state-of-the-art analyses that are of value to various social sectors. Smart*Light’s aim is not to replace existing synchrotron facilities but to provide a compact alternative so that users will not be restricted by the limited time slots available at larger synchrotrons.

Material research and hidden layers in paintings

An important advantage of the new synchrotron is its mobile character: the entire set-up will be only four metres long, enabling it to be used in any lab. The instrument can be delivered to the site of an especially complex scenario, rather than vice versa, so that, for example, corrosion in ships can be detected and prevented. Smart*Light will eventually be available for medical diagnostics in hospitals and for research into masterpieces by artists such Bruegel, Rubens and Vermeer in museums. The ability to test the chemical composition of a painting layer by layer, for example, is of importance not only in the conservation of paintings but also in research into authenticity.

Cross-border partnership

The project brings together specialists from universities, companies, museums and research institutes. The tabletop synchrotron is being built at TU Eindhoven, and the associated detection techniques, such as X-ray diffraction, X-ray fluorescence and X-ray tomography, are being developed by the universities of Antwerp and Ghent. TU Delft is focussing on the instrument’s functionality in relation to materials research and fine art applications. Other institutions involved include VDL ETG BV, Agfa Healthcare, Erasmus MC, Museum Boijmans Van Beuningen, TI-COAST, XRE NV, the Royal Museum of Fine Arts in Antwerp, and the Materials Innovation Institute. TU Delft (MSE department in the 3ME faculty) is managing the project.

Interreg Vlaanderen-Nederland subsidises collaborative projects for smart, green and inclusive growth. The cross-border nature of an Interreg project is essential: they involve intensive collaboration between partners on both sides of the border, in which all partners arrange for supplementary funding. Interreg is funded by the European Regional Development Fund. Read more on the Interreg website.

Contact persons at TU Delft: Dr Hessel Castricum, project leader and Prof. Dr Joris Dik, professor of Materials in Art & Archaeology

Röntgentechnologie

Een persoon screenen op borstkanker, het inspecteren van lasnaden in pijpleidingen en het bekijken van de chemische conditie van kunstwerken. Dit gebeurt doorgaans met dezelfde ‘klassieke’ röntgentechnologie, ontwikkeld in de negentiende eeuw. Deze röntgenstraling heeft echter een vrij lage intensiteit en is vrijwel niet instelbaar, waardoor slechts een momentopname gemaakt kan worden en de informatie vaak niet voldoende gedetailleerd is. Voor geavanceerdere toepassingen, zoals de ontwikkeling van hightech materialen en van nieuwe medicijnen, is ‘coherente’ hoge-intensiteit röntgenstraling tegenwoordig onontbeerlijk. Deze straling wordt momenteel echter alleen geproduceerd in synchrotrons, grote versnellers waarin elektronen met bijna de lichtsnelheid in een km-lange buis voortbewegen. Met deze synchrotronstraling kunnen veranderingen in materialen en weefsels zeer gedetailleerd in tijd en ruimte worden gevolgd. De beperkte beschikbaarheid van met name hoge-energie synchrotronstraling legt echter fikse beperkingen op aan de meetcondities. Voor verschillende toepassingen is reizen naar een synchrotron (alle buiten de Benelux) zelfs onhaalbaar.

Botsingen tussen laser en elektronen

Smart*Light maakt gebruik van nieuwe versnellertechnologie om laserlicht om te zetten in intense en coherente röntgenstraling door deze te laten botsen (via ‘inverse Compton scattering’) met een hoogenergetische bundel elektronen. Met deze straling kunnen vervolgens state-of-the-art analyses worden uitgevoerd die van waarde zijn voor diverse maatschappelijke sectoren. Hoewel Smart*Light niet tot doel heeft bestaande synchrotronfaciliteiten te vervangen, zal het dankzij het compacte ontwerp wel een belangrijke aanvulling hierop vormen. Gebruikers zullen daardoor minder afhankelijk zijn van de schaarse meettijd bij grote synchrotrons.

Materiaalonderzoek en verborgen lagen in schilderijen

Vooral het mobiele karakter is een belangrijk voordeel: de gehele opstelling zal nog geen vier meter lang worden en is daardoor naar believen in elk lab te gebruiken. Het instrument kan bijvoorbeeld bij een specifieke complexe meetopstelling worden neergezet in plaats van andersom. Het verband tussen procescondities, microstructuur en materiaaleigenschappen kan zo effectiever worden onderzocht. Dit vereenvoudigt de ontwikkeling van nieuwe materialen, zodat bijvoorbeeld vermoeiing en corrosie bij schepen beter kan worden tegengegaan, of de toepasbaarheid van 3D-geprinte materialen kan worden vergroot. Op termijn biedt Smart*Light unieke mogelijkheden voor medische diagnostiek in ziekenhuizen en voor onderzoek naar topkunstwerken van o.a. Rubens, Vermeer en Brueghel in musea. Zo is de mogelijkheid om de chemische samenstelling van kunstwerken laag voor laag te analyseren niet alleen van belang voor de conservering van kunst maar bijvoorbeeld ook voor authenticiteitsonderzoek.

Grensoverschrijdende samenwerking

In het project wordt vanuit verschillende specialismen intensief samengewerkt door universiteiten, bedrijven, musea en onderzoeksinstituten. Daarbij vindt de bouw van röntgenbron plaats aan de TU Eindhoven, en ontwikkelen de universiteiten van Antwerpen en Gent de hierop afgestemde detectietechnieken, zoals röntgendiffractie, -fluorescentie en -tomografie. De betrokkenheid van de TU Delft richt zich met name op de functionaliteit van het instrument voor materiaal- en kunstonderzoek. Verder zijn aangesloten: VDL ETG BV, Agfa Healthcare, Erasmus MC, Museum Boijmans Van Beuningen, TI-COAST, XRE NV, Koninklijk Museum voor Schone Kunsten Antwerpen, en Stichting Materials Innovation Institute. TU Delft (afdeling MSE bij de faculteit 3ME) is penvoerder van Smart*Light.

Interreg Vlaanderen-Nederland subsidieert samenwerkingsprojecten voor slimme, groene en inclusieve groei. Het grensoverschrijdende karakter van een Interreg-project is essentieel: er vindt intensieve samenwerking plaats tussen partners aan beide zijden van de grens, waarbij alle partners zorgen voor aanvullende financiering. Interreg wordt gefinancierd vanuit het Europese Fonds voor Regionale Ontwikkeling (EFRO). Lees meer over het Smart*Light project op de website van Interreg.

Contactpersonen TU Delft: Dr. Hessel Castricum, projectverantwoordelijke en Prof. Dr. Joris Dik, hoogleraar Materials in Art & Archaeology